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M E L T  B Y  T H E  S T E P A N O V  M E T H O D ,  D U R I N G  T H E I R  

C O O L I N G  

A. V. Zhdanov and L. P. Nikolaeva UDC 532.78 

We calculated the temperature fieMs and the corresponding thermoelastic stresses in tubes, produced from 
a melt by the Stepanov method, during their cooling. The results of the calculations are presented in the form 

of surfaces constructed above the longitudinal cross section of the tube. We investigate the maximum values 
of stresses as a function of the rate of cooling and the behavior of the difference between the temperatures 

of the ambient inside and outside the tube. 

Introduction. A number of publications, e.g., [1-3] ,  present calculations of the temperature fields and 

corresponding thermal stresses in tubes, obtained from a melt by the Stepanov technique, during the growth of 

these tubes. In the present work we suggest calculations of thermoelastic stresses in tubes during their cooling, i.e., 
stresses varying in time. We also follow the tendency of the variation of these stresses as a function of such important 

parameters as the differences in the temperatures of the media inside and outside the tube. To determine the 
temperature field T(r, z, t), varying in time, in a cooling-off crystal, it is necessary to know the initial distribution 
of the temperature T0(r, z). It was found in [I ] and is used here. 

For clarity we will show the distribution of the normal meridian a m and normal circumferential cr~o stresses 

in the form of surfaces constructed above the longitudinal cross section of the tube at different instants of cooling. 

The calculations obtained permit one to obtain the initial data for optimizing the cooling process, primarily 

associated with the behavior of stresses in tubes and with the time of this process. 

1. Mathematical Model. During the crystallization of a tube of length L, with the inner radius R1 and the 

outer radius R2, produced with the speed of pulling V0, the temperature field in it T O satisfies the quasistationary 

equation of heat transfer 

ks( lr 
Or Or 

02TO ) oTO 
+ - -  - VoPs% s - 0 

Oz 2 Oz 
(1) 

subject to the following boundary conditions: on the inner and outer surfaces of the tube we prescribe heat exchange 

with the surrounding medium having the temperatures O1 and 02 (see Fig. 1): 

OT ~ OT ~ 0 
- k s ~ =  h s (T  ~  O~ , k s ~ =  h s (T  O -  O1)[r=Rl, (2) 

where 

o o 
o ~ = + 7 ; T3 + 7 

On the lower (the front of crystallization) and upper ends of the tube the following temperatures are prescribes: 

o T O (r,  /) 0 T O(r, O) = Tin, = Tc, R 1 <_ r <_R 2. (3) 
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Fig. 1. Scheme of a heat node at the initial and final instants of time. 

The temperature T(r, z, ~) in a cooling-off crystal satisfies the following heat conduction equation: 

OT 1 ( 0  

Or r Or 

with the boundary conditions 

- -  - -  T = a t ~  a - -  
Or OZ2 ' Cps PS 

(4) 

- k  OT s-~r h s (T - 02)[r=g 2 k OT = , S-~r = hs ( Z -  O1) lr=R1, 

T (r , O, r) = T m,  T (r , l ,  r) = T c,  R 1 <_ r < R 2,  (5) 

and the initial condition 

T ( r ,  z ,  O) = T O (r ,  z ) .  (6) 

It is assumed that the temperatures O1, 02 and Tm, T c vary in time according to the exponential law 

z ~0 -a2t 
O 1  = TO1 e -a l t  + 7 (1'1 e - Z l  0 e - a l t )  , 

02 = T30 e-a3t  + 7z (TO e-a4t _ T30 e-a3t),  Tm = TmO e-aSt , o -a6t 
T c = T c e 

(7) 

We determine the coefficients al ,  a2, ill, f12, 71, and 7x from the condition that we know the final thermal 

state of the entire system, at which it arrives after a certain known time tf. 

We present the solution of problem (4)-(6) in the form of the sum 

T = T 1 + T*, (8) 

where 

O 1 - -  0 2 OlW2 + OxW 1 
T* = 2  ln r  + , 

w 1 + w 2 w 1 + w 2 

1 
1 21nR  1, w 2 = ~ + 2 1 n R  2, 2 = h s / k  s .  (9) 

w 1 = R-- T - 

Let us substitute Eq. (8) into Eqs. (4)-(6) and then apply a Laplace transformation to T1. Then for T1, which is 

the Laplace transform of the function T1, we obtain the following problem: 
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- - -  ~ + ~ - s T  1 = F ( r ,  z s )  F ( r ,  z s ) = s T * -  T O 
r [ [ ) J O r  Or Oz 2 . . . .  

OT 1 OT 1 
- ks W = hs ~'llr=R2' ks-~r = hs TI[r=RI '  (10) 

formula 

T1 (r, 0,  s )=  Tin-  ~ * ( r ,  0), T1 (r, l, s ) = T c -  ~* ( r ,  /). 

The resulting problem (10) admits separation of variables, and its solution can be represented by the 

~l" l (r ,  z ,  s ) =  ~ Zk (Z ,  s) X k ( r ) .  (11) 
k=l 

Here the functions Xk(r) are defined by the equalities 

Ok r, ("k) ("k) :"kr) 
Xk - [I Dk ]l ' Dk = D -~2 r =Jo  "-~2 r + Y ~k)  No [ ~ 2 ' 

where do, NO are Bessel functions of zero order of the first and second kind, respectively. The eigenvalues #k are 
solutions of the algebraic equation 

f i l l  (fl) -- kJo (fl)' 

and the numbers ~'~k) are equal to 

~ N  1 (~) -- kN 0 (,u) 

R1 
= 0 ,  

r 0~)  = - ~ '#x  (zk) - kmo ~uk)" 

The square of the norm of the functions Dk is 

II Dk 
t .  

The functions Zk(z, s) have the form 

o2 . ~ 
l~ k R2  ' ~k = (~k/R2) z .  

Sh 6 k (1 - z) Sh 6kl 
Zk (z , s) = a k Sh rSkl + bk Sh 6kl 

1 
f ~k (~, y) Fk (y) dy, 
o 

where 

f 
1 ] Sh ~kz Sh 6 k (l  - y ) ,  

G k (z ,  y) - 6k Sh r~kl l Sh 6k (1 - z) Sh 6ky, 

O < z ~ y ,  

y ~ z ~ l ;  

~k = ~ + ~k ; ak = (Tin - ~* (0 ,  s ) ,  

0 
Tm 

Xlc)r - as 
s + - -  a 

m m k + ~  ct 1 
s + - -  a 

A (I) k -- 

(12) 
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T2 A(1) T4 A(2). A(kl) = 
r 2 ~z 4 , s + - -  s + - -  a a 

2l k - w2mk. 
w 1 + W 2 ' 

1 

lk - 2k II D~ II 

A(k2) 2 l k -  Wlmk.  k [  RI ( R 1 
= Wl + w2 ' mk - ~k II Ok II D ~ k )  + R22 O Pk R22 

I R1 ( R1 
kD ~k )  In R 2 + k R22 D /2 k R22 In R 1 + D ~Uk) - D 

F k =  (F,  Xk)r = - Z  O -  (To,  Xk) r+  s ( T * ,  Xk) r.  

; 

/~k R22 ' 

We denote by ( ' ,  ")r the scalar product with the weight r in the space L~(0, l). In the expression for F/~ the 
functions Z ~ and (T~, Xk)r are the coefficients of the Fourier expansion of T O in the functions Xk: 

T O ~ ( , X k ) r X  k +  Z k '  TO (r z O) 
k=l k=l 

Let us present explicit expressions for the functions Z~k, (T~o, Xk)r, s(T*, Xk)r entering into the repre- 
sentation for F/~. The  functions Z~k have the form 

Z~ ( ~ )  Ia(k 1) ( r]kz 
= exp exp - T ) 

r]kZ ) + G  (2) exp - ~ - -  
0 

c k 
- 2---k ' 

where 

( ~ / o c~ l (~/ Z) o cO 
b k + exp ~-+ ak + ~k 

G(kl ) = ~k - ; 

exp ( -  r/k/) - 1 

c k l (r/ Z) o ck 
b 0 + exp k--  -- a/~ + ~ k  

exp ( -  ~k/) - 1 

VO PsCps 0 
X = ks ; r/k = ~/Z 2 + 4~k ; ak = cSlmk + 711k �9 

The coefficients b ~ are calculated from the same formulas as a~, except that it is necessary to take c~2, 72 instead 
of c51, 71. The  coefficients 6i, 7i (i = 1, 2) are defined by the following expressions: 

o  Ow2 + rOw, 
c31 = Tm Wl + w2 , 71 = - )" Wl + w--------2 

o o o o 
o T2w2 + T4Wl T4 - T2 

- ,  2=- wx+w2. 
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The coefficients c~ can be found from the formulas 

o Z [a (k ln R2 + 1) + flk l D (,uk) + ck = ~k II Dk II t 

R I R1 R 1 

In the latter expressions 

o o ~o ~o> +~ + <~o ~> w~ T 1 -  TO- TO+T4 - _ 
a = 2  l ( w  1 +w2)  , / 6 =  l (w  I +w2)  

The coefficients (~0, Xk)r can be written as follows: 

where 

0 6 '> : ~l~ r~ - ~o 

Wl "+ w2 
m + m k  

TOw2 + T~w 1 
w 1 + w  2 

, p~2~= l(~lk + Zmk). 

And, finally, the coefficients s(7"*, Xk)r can be found from the formula 

where 

0 

ct 1 a------3 ; 
s + - -  s + - -  a a 

A~ 
~2~ (~) = _ - -7 -  

0 T 2 T O 

r 2 a 1 
s + - -  s + - -  a a 

+ 

a~ 
+-7-- 

0 
T~ T 3 

ct 4 c~ 3 
s + - -  s + - -  a a 

Substituting the above expressions into Eq. (11) and integrating, we find 

f Gk(z, y) Fk(y)aY= 2 
o 

• 

• 

Sh c3k (l - z) + exp ( ~ - ~  l ) Sh 3kZ 

Sh ~kl 
+ 
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+ 

Sh 3k (l - z) + exp ( ~ - ~  l ) 

Sh c3kl 

Sh di/~z 

~ ] c k Sh CSkZ + Sh di k (l - z) 
z 1 - Sh ~k l + 2 k ~  

P(~) F Sh ak~ + Sh ak (l - ~) 

+ ~ L 1 - Sh 3~l 3k 

pp [ Sh ~,~z 1 
+ - - 5 -  ~ - t s - - f f ~ l / -  

,5 k J 

Sh ~ + Sh ~k (l - z) sr 2) (,) [ Sh e ~  ] 
SV(kl)c~ k2 ($) 1 -- Sh 6kl Ok2 [ z - l Sh dkl J " (13) 

Using the well-known inversion theorems, applied to the functions Zk(z, s) of formulas (12), (13), we determine 
the temperature T 1 (z, t): 

T 1 (r, z, t)= ~ Z k(z ,  t) X k (r). 
k=l 

Here 

2 
zk (~ t) = X ~z, ( -  1 /~2~)  exp ( -  ~2~t) + 

' a a2s s=l )~k a 

0 / r .  / ) Ck ~. (_  1)] l 
+ 2 ~ ] = i  ]~ exp - i - - y - + 2  k at + 

+ 2 k sin J1 z 

+ 2  • ( -  1)]c(S) 2 z exp - + ; t  k 
s=l ]--1 ~ _--5- + 2k - - -  

a 

2 

s=l j=l 

at)+ 

(-(/; ) 

X 

l z 

3 
- X  

s=l 

-7- 
g - ( -  1) s r/k 

+ 
2 

2) 
W f (  a2s-1 H(k s) Sh 2k a - - -  ) (l - z) 

(Z2s- 1 ) 
Sh d 2k a 

• 
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x exp ( -  a2s_  1 t) + ~ exp ( -  a2s t) + 

sin  )) 
+2.7r E E - /4  s) 2 2 exp - + 2  k at  - 

- 2  ~ ( -  1) / l exp - +2  k at " 

In this expression the following notation is introduced 

= 7,0 A(1) U(k 3) ,vO a(2) 0 A~I), 42)  ( -  1) i "2~k  = -- ~3"k  1) = _ T1 ) , 

 oA(2) o (- lC Tcmk, U(k4) = (_  1)i+I a4 ~tk , = _ T m  ink ,  ,= 0 

H(~I)= U(k 1) 1 - - -  = - H~ 3) U(k 3) 
a ) ' ' 

B~ 1) (-1)/U(~ 2) 1 - - ~ -  , = ( - 1 ) /  

B~3)= ( -  1) ] U(k 6) , C~ 1)= 41) (1 - Wj), C~2)= 4 2) ( -  1) j, 

(3 U(k 3 (k 4 U(k4 { 2,  ] = 2 r e + l )  
C ) =  ) ( l - W / ) ,  C ) =  ) ( - 1 r  % =  0 ,  ] = 2 m .  

Thus, we found the function T1 (r, z, t) and this means that we found the unknown temperature field T ( r ,  

z, t). The computed temperature field makes it possible to determine the corresponding thermoelastic stressed state. 
For this purpose, we will represent a tube in the form of a circular cylindrical shell of constant thickness. Let us 
denote the thickness of the shell by h = R2 - R1, the radius of the middle surface by R = (R1 + R2)/2, and the 
axial and radial displacements of the middle surface by u and to, respectively; am and %, are the meridian and 
circumferential normal stresses. 

The thermal stresses am and a~o are determined from the well-known formulas [4 ] 

E d u  d 2 to ] 
cry - 1 - v 2 v dz  v x  .--72dz + --R - (1 + v)  a t T  ] , 

e du  dZto to ] (14) 
am - 1 - v 2 --dz -- x - - d z  2 + v --R - (1 + v)  cttT j , 

u =  f ( l  + v)  T - v - -  dz  , M = - D + ( l + v )  atT 
R [ dz  2 " 

The value of x in formulas (14) is reckoned from the middle surface of the tube (-0 .5h < x < 0 .5h) .  

The component of the displacement vector to satisfies the equation 
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__d4w + 4k4w _ - -  

dz  4 

E h a t - T  - (1 + v )  --d2T = f ( z )  
DR at  dz  2 ' 

(15) 

ha 
- ~ = 1  f T ( R  + x ,  z) d x ,  

h - h a  

12 h~ 
~ ' =  ha.. f T (R + x ,  z) x d x .  

- h a  

The boundary conditions for Eq. (15) are formulated for a shell with free edges, i.e., 

M -  dMdz - 0 7  z = O , l .  (16) 

The general solution of Eq. (15) can be written in the form 

1 
o9 (z) = C 1 sh kz  cos kz  + C 2 -~ [ch kz  sin kz  + sh kz  cos kz  ] + 

1 
+ C 3 -~ sh kz sin kz  + C 4 4 [ch kz  sin kz  - sh kz  cos kz  ] + 

+ 1 ~ [ c h k ( z - ~ ) s i n ( z - ~ ) - s h ( z - ~ ) c o s ( z - ~ ) ] f ( ~ ) d ~ .  
4k a 0 

The coefficients C1, C2, C3, C4 can be found from boundary conditions (16). In the preceding formulas 

the quantities k and D denote 

k 4 = 3 ( 1  - v  2) D -  E h  3 

h2R 2 ' 12 (1 - v 2) ' 

The characteristics of the materials and the parameters of the process are taken from handbooks [5, 6 ]. 

It should be noted that the heat transfer coefficient we selected takes into account the total amount of heat removed 

by radiation and convection. 

2. Numerical Results. In order to calculate the thermal stresses in a cooling-off crystal, it is necessary first 

to calculate the coefficients a l ,  a2, ill, f12, ~'1, and 72, which determine the rate of cooling. They  can be found from 

the following equalities (see Fig. 1): 

^ 0  ^ 0  ^ 0  0 e - a l t f  = T~ e -a2tf o e -a3 t f  T 1 T 1 , = T 3 , T 2 = T 2 , 

^ 0 ^ 0 .TO --a6tr "" 0 T40 e -a4 t f  = T4 , TmO e-a5t f  = T m ,  ~ c e , = T c . 

^ ^ ^ ^ ^ 

Here ~1, ~2, ~3, ~4 are the final values of the temperatures of the ambient and ~m, 7~c are the final values of the 

temperatures of the lower and upper ends of the crystal, respectively. The system arrives at this temperature state 

after a certain known time t -- tf. Figures 2 and 3 present a typical distribution of the stresses a~, and a m for different 

times and the following values of the parameters that characterize the thermal zone: 

0 0 0 0 0 0 
T 1 = 2000 ~ T 2 = 1540 ~ T 3 = 1875 ~ T 4 = 1520 ~ T m = 20500 T c = 1550 ~ , , , , ~ , 

^ 0  " 0  ^ 0  ^ 0  ^ 0  ^ 0  
T 1 = 2 0 0  ~  T 2 = 180 ~  T 3 = 160 ~  T 4 = 150 ~  T m = 2 7 5  ~  T c = 2 0 0  ~  (17) 

According to our calculations, the maximum values la~lmax are attained at the lower end of the tube. 

The  figures also show a smooth change in the stresses a~ and a m with retention of all the characteristic 

features of the initial state. 
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Fig. 2. Typical distribution of stresses ~q, at different instants of cooling: a~,, 

MPa; Z, cm; X, mm. 
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Fig. 3. Typical distribution of stresses am at different instants of cooling, am, 

MPa. 

Of course, the character of the behavior of the stresses depends on the rate of cooling, i.e., on the values 

of the coefficients a l ,  a2, ill ,  f12, }'1, 72 and, which is very interesting for the practical growth of crystals, on the 

difference between the temperatures of the ambient inside and outside the surface of the tube. 

We constructed the dependences of the maximum values of the stresses I cr~lmax for the process of tube 

cooling over the periods of time tf= 60 and 120 min for different characters of the behavior of the difference between 

the temperatures of the external media: for a decreasing (Fig. 4a) and an increasing (Fig. 4b) one. Figure 4a 

corresponds to the temperature regime (17) and Fig. 4b to the temperature regime 

0 T o 0 0 0 T = 2000 ~ T 2 1540 ~ , 19800 T 4 15200 T m 2050 ~ T c 1550 ~ 

^ 0  ^ O  ^ 0  ^ 0  ^ 0  ^ 0  
T 1 = 2 8 0  ~ T 2 = 190 ~ T 3 = 160 ~ T 4 = 150 ~ T m = 3 0 0  ~ T c = 200~ , , , , , �9 (18) 

From these graphs it is seen that the change in the stresses is very appreciable on the lower end of the 

tube in contrast to the upper end. Thus, for example, the maximum value I%lma x on the lower end decreased from 

105 to 20 MPa and on the upper end from 17 to 7 MPa. We note that the behavior of Icr~,lmax depends qualitatively 

on the behavior of the temperature differences: while Icr~,lma x decreases monotonically with time with a decreasing 

temperature difference (see Fig. 4a), in the case of an increasing difference it increases substantially up to a certain 

instant of time and then decreases, exhibiting a pronounced maximum (see Fig. 4b). Our calculations show that 

the largest values of I a~ I max in the case of an increasing temperature difference are almost independent  of the rate 

of cooling and are attained at different instants of time t*. For example, for the cooling rate corresponding to t f  = 

60 min t* = 15 min, and for t f - -  120 min t* = 40 min (see Fig. 4b). 

The maximum values of I crmlma x a r e  attained on the tube surface near the lower end. As a whole the 

character of the behavior of I am I max in time is similar to the behavior of 1% t max and differs only in the values of 

the stresses, which, as a rule, are smaller by almost an order  of magnitude. 
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Fig. 4. Time dependences of I ~ l m a  x for different rates of cooling: a) an 
increasing difference of temperatures;  b) a decreasing difference of 

temperatures. I a~ I max, MPa; t, min. 

C O N C L U S I O N S  

1. The stresses in the process of the cooling-off of a crystal preserve all of the characteristic features of the 

initial state, changing smoothly with time. 
2. The behavior of the maximum stresses I cry I max in time may either be monotonically decreasing or have 

a maximum during the time of cooling tf, depending on the regime of the crystal cooling-off. 

N O T A T I O N  

ks, thermal conductivity coefficient; V0, speed of crystal pulling; Ps, density of the crystal; TOm, melting 

temperature; T~c, temperature of the upper end of the crystal; ai, coefficient of temperature expansion; hs, heat 
transfer coefficient; Cps, heat capacity; E, Young's modulus; v, Poisson coefficient; tT~o , am, circumferential and 

meridian normal stresses; tf, time of crystal cooling-off. 
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